The Site / The Fight

by Yonah Freemark
yfreemark (at) thetransportpolitic (dot) com
  • Le progrès ne vaut que s'il est partagé par tous.

Email newsletter

Twitter



When American transit agencies ignore the world’s move to open gangways

» Virtually every new metro or subway train purchased by transit agencies over the past ten years has been built with open gangways—allowing passengers to walk from one end of the train to the other. Except in the United States.

New York City’s Second Avenue Subway project, which in its first phase will bring transit service north from 63rd to 96th Streets in Manhattan, will provide many benefits for commuters, offering three new stations and much easier access from the Upper East Side to western Midtown. It will reduce congestion on the Lexington Avenue Subway (4/5/6) by as much as 13 percent—a boon for commuters on the single-most-used transit corridor in the country. And it will respond to the simple fact that New York City is growing quickly; it has added half a million people since 2000 and continues to expand.

But the Second Avenue Subway project has its issues—notably the fact that at $4.5 billion, it’s outrageously expensive given its 1.7-mile length. Given these construction costs, few projects of this magnitude are possible. So what alternatives do congested, growing cities like New York have to increase the capacity of their transit systems?

All around the world, cities investing in their metros—a term I’ll use here to describe systems like New York’s Subway, the Bay Area BART, and others—are choosing to include open gangways on their trains.* It’s a simple concept to understand: Basically, people who board a train are able to walk from one end of the train to the other without opening doors or stepping outside of the train.

Open gangways provide a number of advantages: One, they expand capacity by allowing riders to use the space that typically sits empty between cars. This added capacity means that a metro line can carry more people with trains of the same length. Two, it allows passengers to redistribute themselves throughout the train while the vehicle is moving, reducing problems associated with many people boarding in the same doorway, such as slow exiting times and poorly distributed standees. Three, it increases safety at times of low ridership by increasing the number of “eyes” in the train. There are no obvious downsides.

Open gangways offer passengers the benefit of an improved, less congested, and safer environment as compared to trains with individual cars, the standard you’re used to if you live in the U.S. And it’s no surprise that transit agencies all around the world are choosing open-gangway trains for virtually every new vehicle purchase. This is documented in the following map, where green cities represent places where the metro systems run at least some trains that are all open-gangway. Those that are red do not. Click on the map for a higher-resolution, larger version.

I used the World Metro Database to help me create the map below and the table at the end of this article, but the Database is out of date and, in some places, incorrect and as a result, I collected the information shown here one agency at a time. The vast majority of metro systems are investing in trains with open gangways.

Yet American transit agencies have ignored the concept. New metro trains have been or are being purchased in Chicago, New York, San Francisco, and Washington, among others, but they all continue to be built with individualized cars, with no open gangways. It’s as if the agencies simply have not gotten the message. Only Honolulu, which has a new purpose-built metro currently under construction, will adopt this technology. Perhaps the other agencies will get the message once that system opens in two years.

I wrote about this issue six years ago, interviewing representatives from New York and Washington transit agencies to ask why their new trains did not feature open gangways. The responses were anemic: In Washington, a spokesman told me that the agency had “no plans to change it just to change it,” as if the concept of open gangways was frivolous. In New York, I was told that open gangways would only be possible if “we have a budget for Research and Design for an entirely new subway car.”

Others have suggested that the handicap in the U.S. is that transit agencies have specifications that make them incapable of handling such vehicles. Some say that U.S. agencies need trains with short cars, but the Paris region features a commuter train with open gangways with cars that are shorter than even the notoriously short Chicago L vehicles (43’5″ versus 48′). Some say that the maintenance expense would be too high to transition to these trains (since maintenance facilities might have to be altered to handle cars that are permanently affixed to one another), but many of the European agencies, with metro systems just as old as those in the U.S., have been able to accommodate the trains in their facilities, probably with the assistance of the train manufacturers. Some suggest that these trains would be more expensive, but evidence suggests otherwise.**

London, which has resisted adding open gangways to its “deep tube” fleet (it has such trains already on its “sub-surface” lines) because of issues with tight curves, has recently come around to the concept. In its future metro vehicle feasibility study, London found that open gangways were not only possible, allowing walk-through trains, but that they would increase train capacity by up to 10 percent, while reducing train weight and energy consumption.

When I analyzed this subject in 2009, I didn’t realize the degree to which the world standard had shifted. 75 percent of non-U.S. metros now offer open-gangway trains in their fleets, representing systems as varied as the brand-new networks in China to the ancient facilities in Berlin or Budapest. The last time Mexico City, Madrid, Oslo, or Amsterdam bought a train with individual, separated cars was back in the 1990s. Even our compatriots just across the border in Montreal and Toronto have come around. Every major train manufacturer offers trains with open gangways off the shelf. What is holding U.S. systems back?

Back in 2013, New York’s Metropolitan Transportation Authority announced in its long-term capital needs assessment that “consideration should be given to” trains with open gangways. We’ve heard no more on this subject in the intervening time, despite some positive coverage of the news.

Yet the agency, like others around the country, has the opportunity to address some of its problems through the purchase of these trains. On the congested Lexington Avenue Line, which I discussed at the beginning, about 45.6 feet of each train’s 513.3-foot length is used up by the empty four feet between each car and the 10 feet reserved for the cabs at the center of the trains.

That means that, if the Lexington Avenue Line were transitioned to trains with open gangways, the line could gain almost an entire car-length of capacity on every train. That’s practically as much relief as the Second Avenue Subway will provide—at the cost of trains that would be purchased anyway.

Open gangways are hardly the end-all be-all of transit operations. They won’t guarantee better service or necessarily attract more riders. And they may not be able to resolve some issues, such as the fact that Washington’s Metro runs trains of different car lengths on each line.

But the fact that every U.S. transit agency—with the exception of Honolulu’s—has failed to adopt to this trend and has no plans to change, raises important questions. Just how much are the management of these transit agencies isolating themselves from world best practice? This is hardly an isolated case. The fact that transit agencies around the world are transitioning infrequent suburban rail operations into frequent regional rail services seems to be lost on most U.S. commuter rail agencies.

If the problem is simply a lack of knowledge, that’s no excuse given the existence of this website or Wikipedia or countless other sources. If the problem is petrified management, stuck in an older technological age and unable to try something new, staffers at those agencies should be working to convince them of at least the possibility of change. If the problem is some sort of U.S.-specific regulatory problem enforced by the federal government, let’s work to adjust it.

I’m skeptical that this technology is just “not possible” on historic U.S. systems; it’s been adapted to too many places around the world in all sorts of conditions for that to be the case. But if the problem is that transit agency management simply doesn’t care enough to adjust their operational standards to respond to improvements that can be offered to passengers, well… it’s time to kick the bums out.

* You could call trains with open gangways “articulated,” but this typically refers to a specific type of gangway, often where the truck (the bogies, where the wheels are) is right below the gangway. A traditional train would have two trucks supporting each car (a 10-car train would have 20 trucks), but an articulated train might have every two cars sharing one truck, such that a 10-car train could have as few as just 11 trucks, vastly reducing weight and energy consumption.

** For example, I compared two contracts conducted in the early 2000s with one metro manufacturer, Alstom. In 2001, Paris bought 805 metro cars (each 49.6 feet long, in open-gangway train configurations) for €695 million. In 2002, New York bought 600 subway cars (each 60.2 feet long, without open gangways) for $962 million. When converted to U.S. dollars (at the July 2001 rate of 1.16 dollars to the euro) and inflation-adjusted to 2002 dollars, the Paris contract was $820 million. This means that, per foot of subway car, Paris paid $20,535 and New York paid $24,200, despite the fact that New York’s contract included, as this article notes, lots of empty space!

World metros, showing presence of open gangways on train fleets
Sort by clicking on column headers.
CityCountryOpen gangways?ContinentYear open gangways addedLast train purchased with individual cars
AlgiersAlgeriaYesAfrica2011n/a
CairoEgyptNoAfrica
YerevanArmeniaNoAsia
BakuAzerbaijanYesAsia2014?
BeijingChinaYesAsia20041999
ChangshaChinaYesAsia2014n/a
ChengduChinaYesAsia2010n/a
ChongqingChinaYesAsia2005n/a
DalianChinaYesAsia2003n/a
GuangzhouChinaYesAsia
HangzhouChinaYesAsia2012n/a
HarbinChinaYesAsia2013n/a
Hong KongChinaYesAsia
KunmingChinaYesAsia2012n/a
NanjingChinaYesAsia2005n/a
NingboChinaYesAsia2014n/a
ShanghaiChinaYesAsia
ShenyangChinaYesAsia2010n/a
ShenzhenChinaYesAsia2004n/a
SuzhouChinaYesAsia2012n/a
TianjinChinaYesAsia20061984
WuhanChinaYesAsia2004n/a
WuxiChinaYesAsia2014n/a
XianChinaYesAsia2011n/a
ZhengzhouChinaYesAsia2013n/a
TbilisiGeorgiaNoAsia
BangaloreIndiaYesAsia2011n/a
ChennaiIndiaYesAsia2015n/a
KolkataIndiaYesAsia
MumbaiIndiaYesAsia2014n/a
New DelhiIndiaYesAsia2002n/a
TehranIranYesAsia
FukuokaJapanYesAsia
HiroshimaJapanNoAsia
KitakyushuJapanYesAsia
KobeJapanYesAsia
KyotoJapanYesAsia
NagoyaJapanYesAsia
OsakaJapanYesAsia
SapporoJapanYesAsia
SendaiJapanYesAsia
TokyoJapanYesAsia
YokohamaJapanYesAsia
AlmatyKazakhstanYesAsia2011n/a
Kuala LumpurMalaysiaSemiAsia
PyongyangNorth KoreaNoAsia
ManilaPhillippinesSemiAsia
MeccaSaudi ArabiaIn planningAsia2019n/a
SingaporeSingaporeYesAsia1987n/a
BusanSouth KoreaYesAsia
DaeguSouth KoreaIn planningAsia
DaejeonSouth KoreaYesAsia
GwangjuSouth KoreaYesAsia
IncheonSouth KoreaYesAsia
SeoulSouth KoreaYesAsia
KaohsiungTaiwanYesAsia
TaipeiTaiwanYesAsia1997n/a
BangkokThailandYesAsia1999n/a
AnkaraTurkeyYesAsia
IstanbulTurkeyYesAsia2000n/a
IzmirTurkeyNoAsia
DubaiUAEYesAsia2009n/a
TashkentUzbekistanNoAsia
ViennaAustriaYesEurope20021993
MinskBelarusIn planningEurope2016?
BrusselsBelgiumYesEurope20071999
SofiaBulgariaNoEurope20051998
PragueCzech RepublicNoEurope
CopenhagenDenmarkYesEurope2002n/a
HelsinkiFinlandYesEurope20011982
LilleFranceIn planningEurope20151999
LyonFranceNoEurope
MarseilleFranceNoEurope
ParisFranceYesEurope19921986
RennesFranceSemiEurope
ToulouseFranceSemiEurope
BerlinGermanyYesEurope19951993
HamburgGermanyYesEurope20122005
MunichGermanyYesEurope20001995
NurembergGermanyYesEurope20041993
AthensGreeceSemiEurope
ThessalonikiGreeceIn planningEurope2018n/a
BudapestHungaryYesEurope
BresciaItalyYesEurope2013n/a
MilanItalyYesEurope20091991
NaplesItalyNoEurope
RomeItalyYesEurope20051999
TurinItalySemiEurope
AmsterdamNetherlandsYesEurope20131997
OsloNorwayYesEurope20051994
WarsawPolandYesEurope20002009
LisbonPortugalYesEurope19991998
BucharestRomaniaYesEurope20021992
KazanRussiaNoEurope
MoscowRussiaIn planningEurope
Nizhny NovgorodRussiaNoEurope
NovosibirskRussiaNoEurope
SamaraRussiaNoEurope
St PetersburgRussiaNoEurope
YekaterinburgRussiaNoEurope
BarcelonaSpainYesEurope
BilbaoSpainYesEurope1995n/a
MadridSpainYesEurope20021998
ValenciaSpainYesEurope
StockholmSwedenSemiEurope
LausanneSwitzerlandYesEurope2008n/a
GlasgowUKIn planningEurope
LondonUKYesEurope20102011
NewcastleUKSemiEurope
DnepropetrovskUkraineNoEurope
KharkivUkraineNoEurope
KievUkraineNoEurope
MontrealCanadaIn planningNorth America20151980
TorontoCanadaYesNorth America20112001
VancouverCanadaSemiNorth America
Santo DomingoDominican RepublicYesNorth America2009n/a
MexicoMexicoYesNorth America20021998
PanamaPanamaYesNorth America2014n/a
AtlantaUSANoNorth America
BaltimoreUSANoNorth America
BostonUSANoNorth America
ChicagoUSANoNorth America
ClevelandUSANoNorth America
HonoluluUSAIn planningNorth America2017n/a
Las VegasUSANoNorth America
Los AngelesUSANoNorth America
MiamiUSANoNorth America
New YorkUSANoNorth America
PATHUSANoNorth America
PhiladelphiaUSANoNorth America
San FranciscoUSANoNorth America
San JuanUSANoNorth America
WashingtonUSANoNorth America
Buenos AiresArgentinaYesSouth America2013
Belo HorizonteBrazilYesSouth America
BrasiliaBrazilNoSouth America
Porto AlegreBrazilYesSouth America
RecifeBrazilYesSouth America20121985
Rio de JaneiroBrazilYesSouth America
SalvadorBrazilYesSouth America2014n/a
Sao PauloBrazilYesSouth America20021999
SantiagoChileYesSouth America19971987
ValparaisoChileNoSouth America
MedellinColumbiaYesSouth America20091995
LimaPeruYesSouth America2011n/a
CaracasVenezuelaYesSouth America
MaracaiboVenezuelaNoSouth America
Note: This list may have errors and it is incomplete; please comment if you identify any issues. The list only includes heavy rail services, not light-rail-grade services, such as the Frankfurt U-Bahn.

Image at top: Potential future London Tube, from Transport for London. World map of metros based on world map base SVG by @F1LT3R of Hyper-Metrix on Wikipedia.

Edit, April 11: I updated values for Moscow, Kazan, Kiev, Kharkiv, Sofia, and Novosibirsk to reflect the fact that they do not currently have metros with open gangways.

Broadening the city through a universal fare card

TP-Main-Logo

» The Paris region plans a single monthly fare for transit access, eliminating zones for pass holders, with the dual goals of encouraging more transit use and social integration.

What if it were possible to travel as much as you’d like by train or bus within Connecticut, from Stamford to New Haven, Hartford, New London, Waterbury, Danbury, Putnam, and hundreds of other towns, and then to travel within them, all on one transit fare card at the monthly price of just $76?

That’s what, in essence, will occur beginning in September in Île-de-France, the region that surrounds and includes Paris and which is practically the physical size of Connecticut—albeit far more populous and benefiting from a far more extensive transit system.

The plan is to eliminate the current five-zone transit fare system for people holding weekly or monthly passes and replace them with a universal, unlimited fare. The universal card will apply to virtually

Continue reading Broadening the city through a universal fare card »

Does Seattle offer the path forward for the national streetcar movement?

TP-Main-Logo

» The city will begin studying dedicated lanes for its streetcar. Will it be the first among many to do so?

During its first four years of operation, Seattle’s South Lake Union streetcar—the nation’s second modern streetcar (after Portland’s)—recorded rapidly growing ridership. Annual passenger counts on the 1.3-mile line increased from 413,000 in 2008 to 750,000 in 2012 (about 3,000 riders on a peak summer day). The figures reflected the blossoming of the South Lake Union neighborhood into an extension of the downtown business district, as well as the region’s growth as a whole (Seattle is one of the nation’s fastest-growing cities) and the strong performance of transit there. The share of people taking public transportation to work in Seattle increased from 17.6 percent in 2000 to 19.3 percent in 2013—a remarkable growth spurt brought on in part by the opening of the streetcar and the Central Link light rail

Continue reading Does Seattle offer the path forward for the national streetcar movement? »

For LaGuardia, an AirTrain that will save almost no one any time

TP-Main-Logo

» New York City’s LaGuardia Airport is its rail-inaccessible stepchild. A proposal to spend half a billion dollars on a new transit link there, however, may do little for most of the region.

LaGuardia Airport is the New York City airport closest to the nation’s largest business district in Midtown Manhattan. Getting there, however, is inconvenient and slow for people who rely on transit and expensive — and often also slow — for those who receive rides in cabs or shuttles. In other words, the experience of reaching the airport leaves something to be desired.

The New York region’s two other major airports — Newark and J.F.K. — each have dedicated AirTrain services that connect to adjacent commuter rail (and Subway services, in the case of J.F.K.). These lines were built by the Port Authority of New York and New Jersey in the 1990s and 2000s to improve transit access to these airports, leaving

Continue reading For LaGuardia, an AirTrain that will save almost no one any time »

Openings and Construction Starts Planned for 2015

TP-Main-Logo

» The future of transportation funding may be in question in the halls of federal, state, and local governments, but investment in improved transit continues at a remarkable pace in 2015. Explore The Transport Politic’s interactive database of projects across the continent.

The failure of the U.S. federal government to increase the gas tax since 1993 — in spite of inflation, an increasing population, and degraded infrastructure — has dominated the discussion on transportation policy since the late 2000s.* All that discussion, though, has failed to result in the development of long-term national revenue sources that accommodate the needs of municipalities interested in expanding their local transportation systems, and funding has stagnated. As a reaction to that state of relative austerity, policymakers from Arizona to Maine have argued for “fix-it-first” policies that emphasize enhancements of the existing system over any new construction.

The lack of expansion in federal revenues,

Continue reading Openings and Construction Starts Planned for 2015 »